Does endogenous adenosine modulate the release of acetylcholine from motor nerve during single and repetitive stimulations in the mouse diaphragm?

نویسندگان

  • L C Chiou
  • S J Hong
  • C C Chang
چکیده

In order to elucidate the physiological role of endogenous adenosine in regulating the release of acetylcholine, the effects of 8-phenyltheophylline, an antagonist of adenosine receptors and dipyridamole, an uptake inhibitor of adenosine, on the contractile response and quantal release of acetylcholine during single and repetitive stimulations of isolated mouse phrenic nerve-diaphragm preparations were studied. The curves relating the concentration vs. inhibition of contractile response to added adenosine and ATP were shifted parallel to the left by dipyridamole, but were shifted to the right by 8-phenyltheophylline at concentrations with little Ca2+-mobilization or phosphodiesterase inhibition. In the absence of exogenously added adenosine, 8-phenyltheophylline increased the quantal content of end-plate potentials (1 Hz), whereas dipyridamole decreased the quantal content. Successive decrease of the amplitude of end-plate potentials (e.p.p. run-down) evoked at 50 Hz was not changed either by 8-phenyltheophylline or by dipyridamole, suggesting that adenosine or ATP released from the motor nerve does not accumulate to an effective concentration even after repetitive stimulation for a feed-back regulation of the transmitter release. It is concluded that endogenous adenosine does inhibit the release of acetylcholine from motor nerve. However, the source of adenosine may be mostly from the muscle and is probably not involved in the feedback autoregulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ENDOGENOUS RELEASE OF OPIATES BY REPETITIVE ELECTRICAL FIELD STIMULATION IN THE GUINEA-PIG AND RAT ILEAL LONGITUDINAL MUSCLE

The effect of repetitive electrical field stimulation and the response of the guinea-pig and rat ileal longitudinal muscle to single pulse stimulations was examined. Single pulse field stimulation produced twitch contraction which was inhibited by repetitive field stimulation (10 Hz, 40V, 0.5 msec for 5 m). This inhibition was largely, though never completely, reversed by naloxone. Contrac...

متن کامل

FIVE ALPHA DIHYDROTESTOSTERONE (5α-DHT) MAY MODULATE NITRIC OXIDE RELEASE VIA ENDOGENOU S CYTOKINES IN PERITONEAL MA CROPHA GES OF NZB/BALBc MICE

Recent studies have established that sex hormones directly or indirectly affect T and B cells and macrophages by manipulating the production of cytokines. In this study the possibility of the effect of 5a-DHT on macrophage (MΦ) nitric oxide (NO) release via interleukin-l, 6 (lL-1β, IL-6) or tumor necrosis factor-a (TNFα) was investigated. The endogenous cytokines IL-1β, IL-6 and TNF-α were ...

متن کامل

Nicotinic acetylcholine receptors in mouse and rat optic nerves.

Receptor-mediated calcium signaling in axons of mouse and rat optic nerves was examined by selectively staining the axonal population with a calcium indicator. Nicotine (1-50 microM) induced an axonal calcium elevation that was eliminated when calcium was removed from the bath, suggesting that nicotine induces calcium influx into axons. The nicotine response was blocked by d-tubocurarine and me...

متن کامل

Effects of Black Scorpion Androctonus crasicuda Venom on Striated Muscle Preparation in vitro.

Effects of venom from black scorpion Androctonus crasicuda (AC) were determined on isolated chick biventer cervices nerve-muscle and mouse hemidiaphragm preparations using twitch tension method. The isolated nerves were stimulated by electrical stimulator and response to each stimulus was recorded. The venom mainly acted prejunctionally to facilitate neuromuscular activity due to an increase in...

متن کامل

P 25: The Facilitatory Action of Snake Venom Phospholipase A2 Neurotoxins by Which Increase the Release of Acetylcholine, May Improve Alzheimer\'s Disease Symptoms

Introduction: In a serious brain disorder like Alzheimer's disease, the levels of acetylcholine (Ach) drop significantly. The gradual death of cholinergic brain cells leads to a profound loss of memory and learning ability. Acetylcholine is the chemical messenger that sends messages from one neuron to another in the area of the brain used for memory. Many of the current medications act to enhan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Japanese journal of pharmacology

دوره 44 4  شماره 

صفحات  -

تاریخ انتشار 1987